UNIVERSITY OF ILLINOIS
AT URBANA-CHAMPAIGN

Physics 403. Modern Physics Laboratory

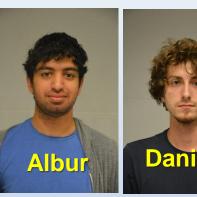
Summer 2020

Eugene V Colla, Alexey Bezryadin

COVID-19 online version

Physics 403 Modern Physics Laboratory

Summer 2020 Teaching Team



aclam2@illinois.edu

Instructors: **Eugene V Colla** kolla@illinos.edu

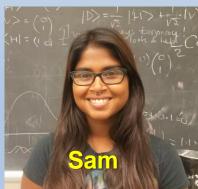
Alexey Bezryadin bezryadi@illinois.edu

Andrew Calhoun ajc7@illinois.edu

Abid Khan aakhan3@illinois.edu

Daniel MacLean dmaclea2@illinois.edu

Hassan, Albur ahassan4@illinois.edu


Support from Paul Kwiat Team

Laboratory **Specialist: Jack Boparai**

Andrew Conrad aconrad5@illinois.edu

Samantha Isaac isaac5@illinois.edu

Spencer Johnson sii3@illinois.edu

Kristina Meier kadunga2@illinois.edu

Physics 403 Modern Physics Laboratory

Summer 2020 Teaching Team

Special thanks to Virginia Lorenz for help in preparation Physics 403 course to online version!

Outline

- I. Goals of the course
- II. Teamwork / grades / expectations from you
- III. Syllabus and schedule
- IV. Your working mode

In class and "after hours" access
Safety, Responsibility

Home and away computing

- V. Take a Lab tour (only video)!
- VI. Let's get started electronic logbooks digital scopes

Course Goals. Primary goals:

Learn how to "do" research

- ✓ Each project is a mini-research project
- ✓ How are experiments actually carried out?
 - The procedures aren't all written out
 - The questions are not in the back of the chapter
 - The answers are not in the back of the book
 - You will have to learn to guide your own activities
- ✓ Use of modern tools and modern analysis and data-recording techniques (virtually but in real time)

Course Goals. Primary goals:

- Learn how to document your work
 - Online electronic logbook *
 - Online saving data and projects in student area on server
 - · Using traditional paper logbooks
 - Making an analysis report
 - Writing formal reports
 - Presenting your findings orally (online)

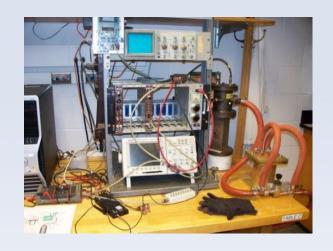
Course Goals. Secondary goals:

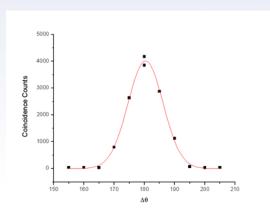
- Learn some modern physics
 - Many experiments were once awarded by Nobelprize
 - They touch on important themes in the development of modern physics
 - Some will provide additional insight to understand advanced courses you have taken

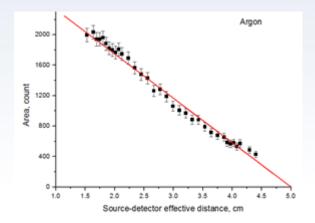
The Experiments. Three main groups

Nuclear / Particle (NP)

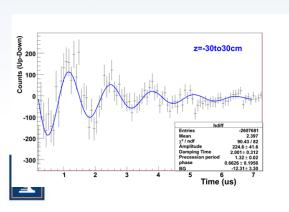
Atomic / Molecular / Optics (AMO)

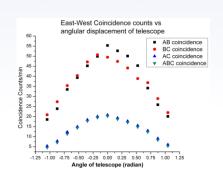

Condensed Matter (CM)


You will do the experiment from all these groups

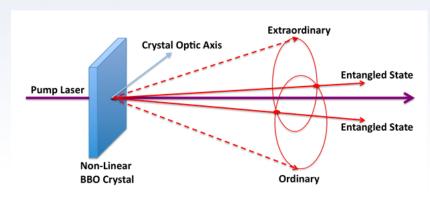

Nuclear / Particle (NP)

- Alpha particle range in gasses
- γ-γ correlation experiment
- γ spectroscopy
- Mössbauer spectroscopy

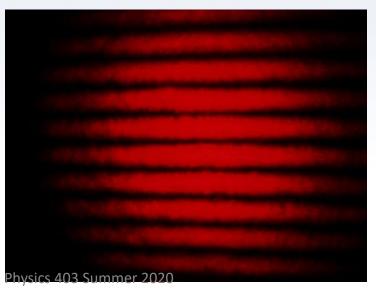




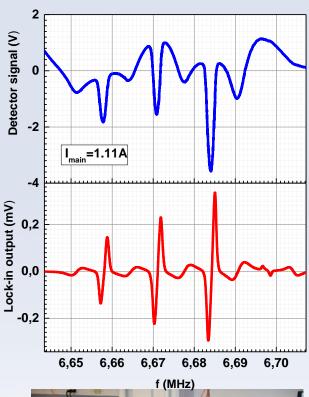
- Nuclear / Particle (NP)
 - Cosmic ray muons:
 - Lifetime, capture rate, magnetic moment
 - Angular distribution of cosmic rays
 - γ spectroscopy
 - Mössbauer spectroscopy (new)

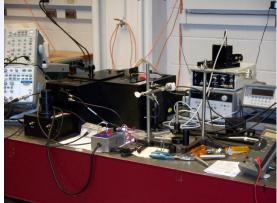

illinois.edu

Physics 403 Summer 2020

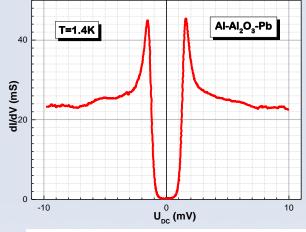

Atomic/Molecular/Optics (AMO)

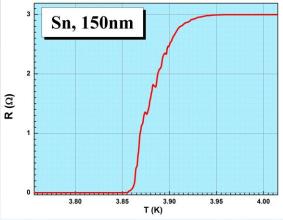
- Berry's phase
- Quantum erasure
- Quantum Entanglement

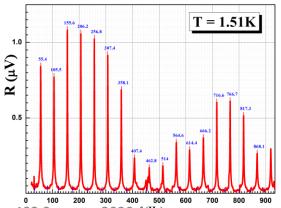



Atomic/Molecular/Optics (AMO)

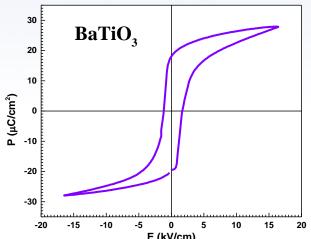
- Optical pumping of rubidium gas
- Fluorescence spectroscopy

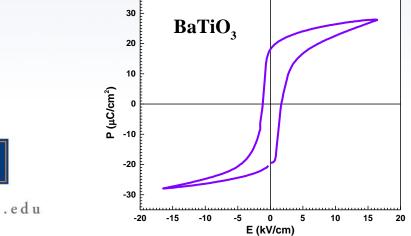


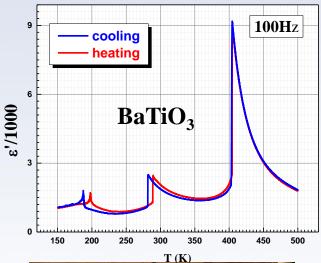



- Condensed Matter (CM)
- **Superconductivity**
- **Tunneling in superconductors**
- 2nd sound in ⁴He superfluid

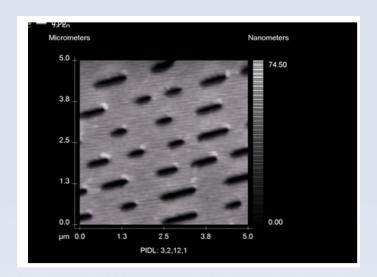
state



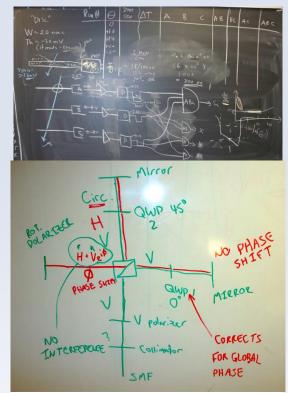

Physics 403 Summer 2020 f (Hz)

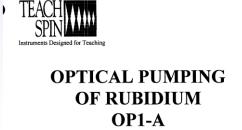

illinois.edu

- Condensed Matter (CM)
- Ferroelectrics and ferroelectric phase transition
- **Pulsed NMR**
- **Calibration of temperature** sensors



- Condensed Matter (CM)
- Special Tools:
- Vacuum film deposition
- Atomic Force Microscope
- Polarizing microscope





illinois.edu Physics 403 Summer 2020 15

The "manuals"

- Many are just guides
- A only few purchased experiments have "real" manuals
- We serve as your guides ... like real research ... yes, we will do it in "online" mode too. We have prepared the materials explaining how to do the experiments and data analysis and you can find all these materials and examples of data analysis in folder in common drive.

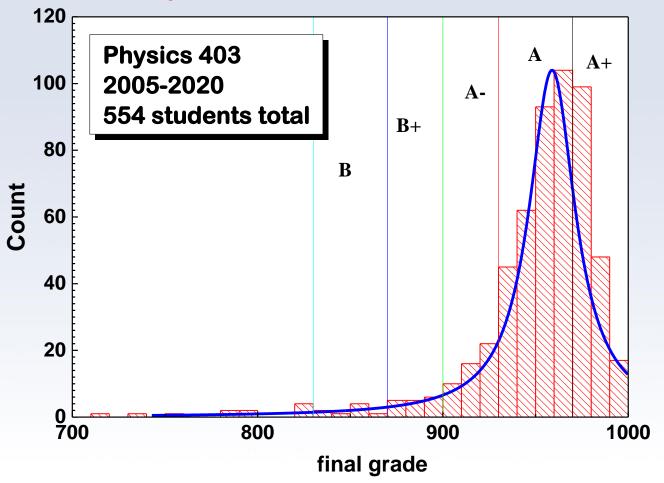
Outline

- J. Goals of the course
- II. Teamwork / grades / expectations from you
- III. Syllabus and schedule
- IV. Your working modeIn class and "after hours" accessSafety, ResponsibilityHome and away computing
- V. Take a Lab tour!
- VI. Let's get started electronic logbooks digital scopes

Grading: Distribution of "740" points

ASSIGNMENT	Points
Expt. documentation : elog reports, shift summaries, plot quality; paper logbooks	120 Total 60 / cycle
Formal reports: physics case, quality of results, depth of analysis, conclusions	400 Total 100 / report
1st Oral report: motivation, organization of presentation; fielding questions	100 Total
Final Oral Presentation ≡ Final Exam	120
Total	740
Effective point total will be	7-10

The grading scale will be a percentage out of "740":


Letter grading scale is approximately 97% = A+, 93% = A, 90% = A-, 87% = B+, 83% = B, 80% = B-, etc

(deadline for resubmissions and for report #4 May 5th 2020)

You can RESUBMIT one lab report to improve your grade

Grading: a piece of history and analysis of the results

Submission of Lab-Reports

- Due dates as on syllabus at midnight
- The reports should be uploaded to the server:
- https://my.physics.illinois.edu/courses/upload/
- Accepted MS-Word or PDF
- For orals MS-PowerPoint* or PDF

* preferable

Absences

If you are sick, let Eugene know by email (kolla@lllinois.edu).

Den'teeme in and get others siek. We are working side by side in a close environment for many hours.

You can "make up" the time with arrangements and you can have access to the rooms. We will be accommodating.

Absences. Excuse Policy.

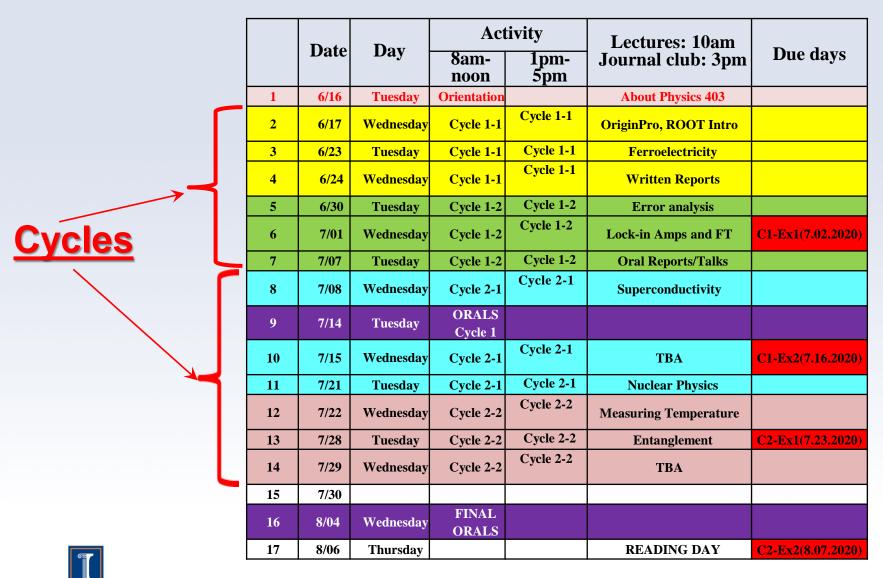
- You can be excused from only one missed assignment, and only if you provide medical or any other acceptable documentation¹.
- If the excused you have missed the oral presentation (oral #1), you
 have to discuss this with us and we will arrange the date for your
 oral talk.
- The Final Oral cannot be excused, as it is equivalent to a final exam.
 You cannot pass the course without credit for this assignment²

1. Student Code: https://studentcode.illinois.edu/article1/part5/1-501/

2. Ibid: https://studentcode.illinois.edu/article3/part2/3-201/

Late Reports

- Policy for late reports
 - You can have ONE "late ticket" for a "free" delay of up to 3 business days, but you must tell us you are using the ticket
 - > Reports are due at midnight on the date shown on the syllabus. After that we will charge:
 - 5 points for up to 1 week late. 10 points for up to 2 weeks late.
 - After that, it's too late.


C1-Ex1(2.07.18)

Outline

- J. Goals of the course
- II. Teamwork / grades / expectations from you
- III. Syllabus and schedule
- IV. Your working modeIn class and "after hours" accessSafety, ResponsibilityHome and away computing
- V. Take a Lab tour!
- VI. Let's get started electronic logbooks digital scopes

Syllabus

Lecture topics are subject to change

	NP A. Cosmic Muon Stand i. Muon lifetime ii. Capture rate iii. Magnetic moment B. Alpha range C. Gamma Gamma D. Cosmic angular distribution	A. Ferro 1 B. Ferro 2 (imaging) C. 2 nd sound of ⁴ He D. pNMR E. Hysteresis loops F. Tunneling G. AFM H. T calibration	Atomic + CM A.Optical pumping B.Superconductivity C.Mutual inductance	Optics A. Quantum Table i. Berry's phase ii. Quantum erasure iii. Entanglement B. Florescence spectroscopy
	Alexey, Daniel	Eugene, Albur	Eugene, Albert, Andrew	and TA's from Kwiat Lab
C1-1	1-2; 3-4; 5-6	11-12; 13-14; 15-16	7-8; 9-10	17-18
C1-2	1-2; 3-4; 5-6	11-12; 7-8; 15-16	13-14; 17-18	9-10
C2-1	8-9; 10-11; 7-12	2-3; 4-5; 1-6	14-15; 16 -17	13-18
C2-2	14-15; 16-17; 13-18	8-9; 4-5; 2-3; 1-6	10-11	7-12

Physics

Cycle	#	Experiment	
C1-1	1-2	Cosmic Muon	
	3-4	Alpha Range	
	5-6	Gamma-Gamma	
	7-8	Superconductivity	
	9-10	Optical pumping	
	11-12	Second sound in He4	
	13-14	Ferro1 Dielectric properties measurement	
	15-16	Pulsed NMR water-glycerol solution	
	17-18	Quantum Optics	
C1-2	13-14	Superconductivity	
	17-18	Optical pumping	
	3-4	Cosmic Muon	
	1-2	Gamma-Gamma	
	5-6	Alpha Range	
	9-10	Quantum Optics	
	11-12	Ferro2 Investigation of the domain structure	
	7-8	pNMR	
	15-16	Tunneling	

Physics 403

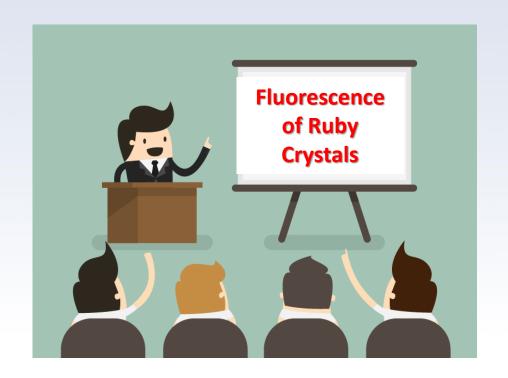
Cycle	#	Experiment		
C2-1	8-9	Cosmic rays muons		
	10-11	Gamma-gamma experiment		
	7-12	Alpha Range		
	2-3	Ferro3		
	4-5	Tunneling in Al-Al ₂ O ₃ -Sn junctions		
	1-6	NMR in water with paramagnetic impurities		
	16-17	Superconductivity in In thin films		
	14-15	Quantum Optics		
	13-18	Fluorescence		
C2-2	14-15	Cosmic rays muons		
	16-17	Alpha range		
	13-18	Gamma-gamma		
	8-9	AFM		
	4-5	Ferro1		
	2-3	NMR (TBA)		
	1-6	Second Sound		
	10-11	Optical Pumping		
	7-12	Quantum Optics		

Assignment of experiments

- 2 cycles with 2 experiments
 - → teams change after cycle

→ joint team reports and elogs but oral

presentations will be done by each


student personally

Spring 2019 Orals Physics 403

After 2 experiments (1 cycle) we will have oral session. The topic of the presentation will be chosen from the experiments done in this cycle.

Outline

- I. Goals of the course
- II. Teamwork / grades / expectations from you
- III. Syllabus and schedule
- IV. Your working mode

In class and "after hours" access
Safety, Responsibility
Home and away computing

- V. Take a Lab tour!
- VI. Let's get started electronic logbooks digital scopes

Lab Access

Use Your ID Card to Access the Lab
You can access the Lab not only on "Lab days"
Late time rules:

You can stay in the Lab until 8pm but need to

Sorry, not for online option

After 8pm and on weekend days – you have to discuss this schedule with your instructor and in general it is preferable to avoid working after 8 pm and on week

Safety is your responsibility!

Nazards: high voltage, radioactive sources, cryogens, chemical materials, high pressure

In class work and "after hours" access & work requires

responsible conduct with regards to

- (I) safety/hazakds and with
- themqiupe (II)

Discuss potential hazards at the beginning of each experiment with an instructor or TA

were bure dots adnor ut ueugh

Problems after hours: 217 493 1576 (Eugene's rell)

302 521 2979 (Gina's cell)

Follow Directly the Recommendations of Safety Working

https://www.drs.illinois.edu/

Safety working in online mode is completely your responsibility. Working from home you are only faced to your electronic gadgets, no radiation from isotopes used in Lab, no cryogenics, no chemistry components, no high voltage.

Outline

- V. Take a Lab tour! It will be virtual tour.
- VI. Let's get started electronic logbooks digital scopes

Outline

- . Goals of the course
- II. Teamwork / grades / expectations from you
- III. Syllabus and schedule
- IV. Your working mode
 In class and "after hours" access
 Safety, Responsibility
 Home and away computing
- V. Take a Lab tour!
- VI. Let's get started
 electronic logbooks
 digital scopes

- Work together
- Write down the equipment used
- Make a diagram of the setup
- Note the settings of dials, switches, gauges

Use a software drawing program to make a detailed sketch

(PowerPoint works this very well)

- Use the eLog (see next).
- Write down what you did in real sentences.
- Provide enough detail that you can reconstruct later what you did!
- How will you look at the data later?
- Do you have enough information?
- Did the equipment perform as expected?

- Many experiments require you to "change and measure" something by hand
 - Make a <u>table</u> in a <u>paper logbook</u> or put the data directly into electronic worksheet (*preferable*).
 - Make a "quick sketch" of your by plotting the data using
 OriginPro or other software

Looking on the graph you can answer the questions:

- Do you have enough points?
- Do you have any obvious anomalies?
- You can repeat points but do not throw them out.
 Use other measurements to check reliability

Many experiments have built-in, computer-based data

acquisition (DAQ)

You will not have time to fully

understand the DAQ, but

- Be sure you know functionally what it is doing ask
- A good idea is to make test measurements of something you know
- As before, anomalies? enough points? uncertainties?

Where to exchange, store and retrieve course information. P403 Lab server

\\engr-file-03\PHYINST\APL Courses\PHYCS403

illinois.edu

Connecting to the PHYS403 server

Connect to VPN following the instructions on the UIUC VPN website:

https://techservices.illinois.edu/services/virtual-private-networkingvpn/download-and-set-up-the-vpn-client

To connect to the PHYS403 Server:

- Connect to the VPN first, then enter the following as the share to connect to:
 - Mac users: Open Finder: Go: Connect to Server, type in address:
 smb://engr-file-03.engr.illinois.edu/PHYINST/APL Courses/PHYCS403
 - Windows users: Open Windows Explorer, type in address:
 \engr-file-03.engr.illinois.edu\PHYINST\APL Courses\PHYCS403
- When prompted for username and password, enter:
 "Uofl\[your netID]" and "[your netID password]"

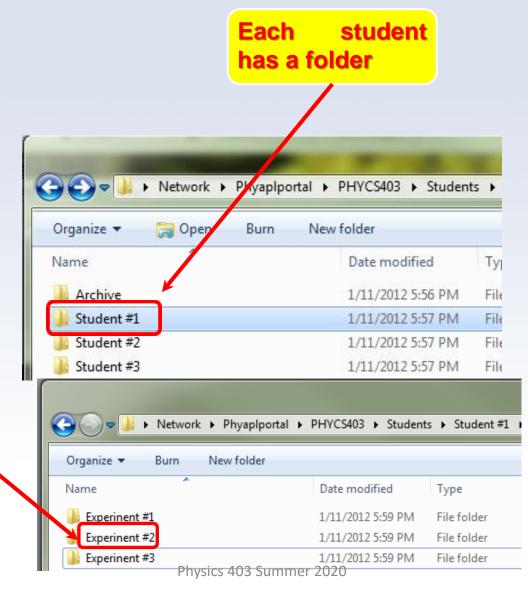
Where to exchange, store and retrieve course information. (i) Your data, projects, tables etc

\\engr-file-03\PHYINST\APL Courses\PHYCS403

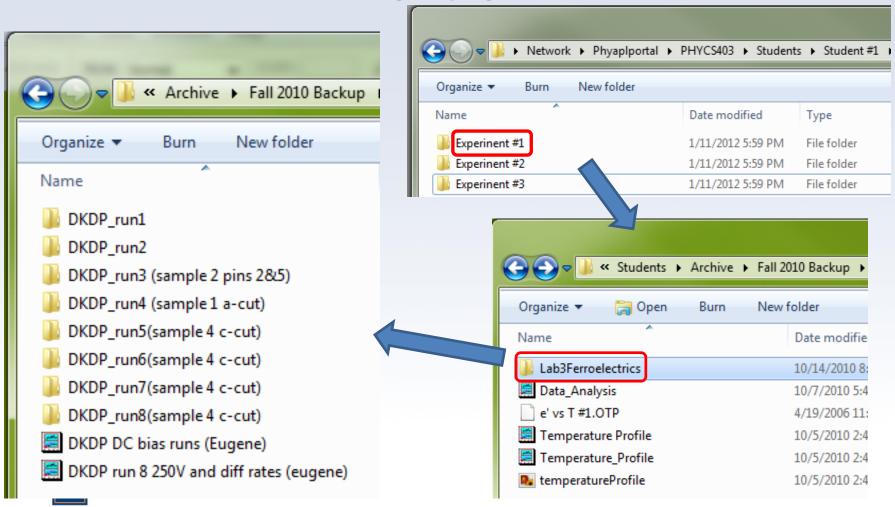
There is a lot useful and not very useful stuff in many folders you can find there

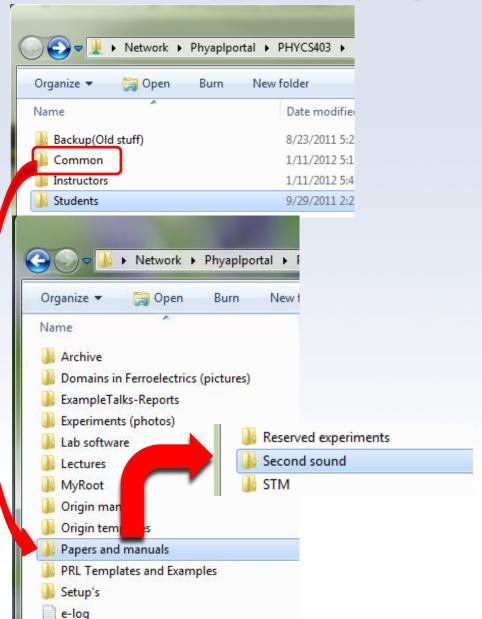
- Summer research
- Summer 2020 online
- Students
- MuonData
- Library
- Journal club P403
- Instructors
- Fourier lecture notes
- ESB5107-01 backup
- DATA
- Common
- Backup(Old stuff)
- backup from HP Z ESB-5107-02

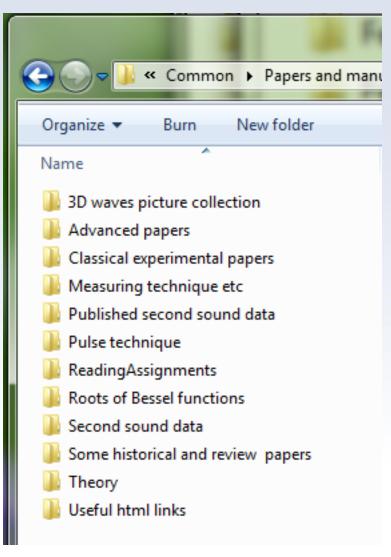
"Useful"
folders are
shown in red
frames


Where to exchange, store and retrieve course information. (i) Your data, projects, tables etc

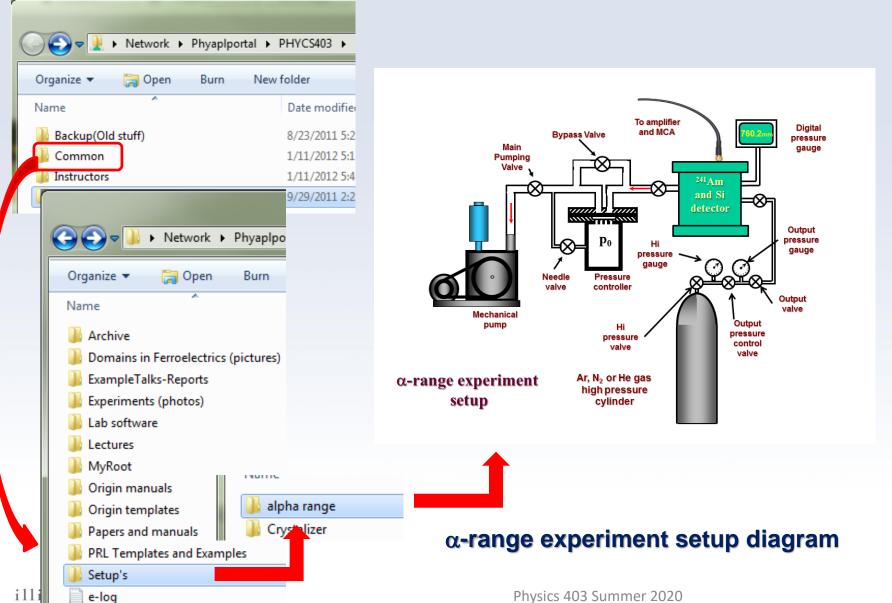
\\engr-file-03\PHYINST\APL Courses\PHYCS403


Store all experiment related materials in corresponding folder

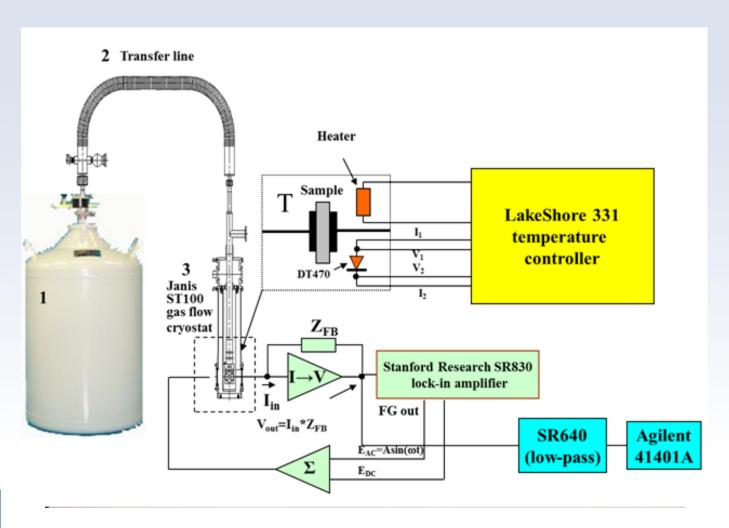



Where to exchange, store and retrieve course information. (i) Your data, projects, tables etc

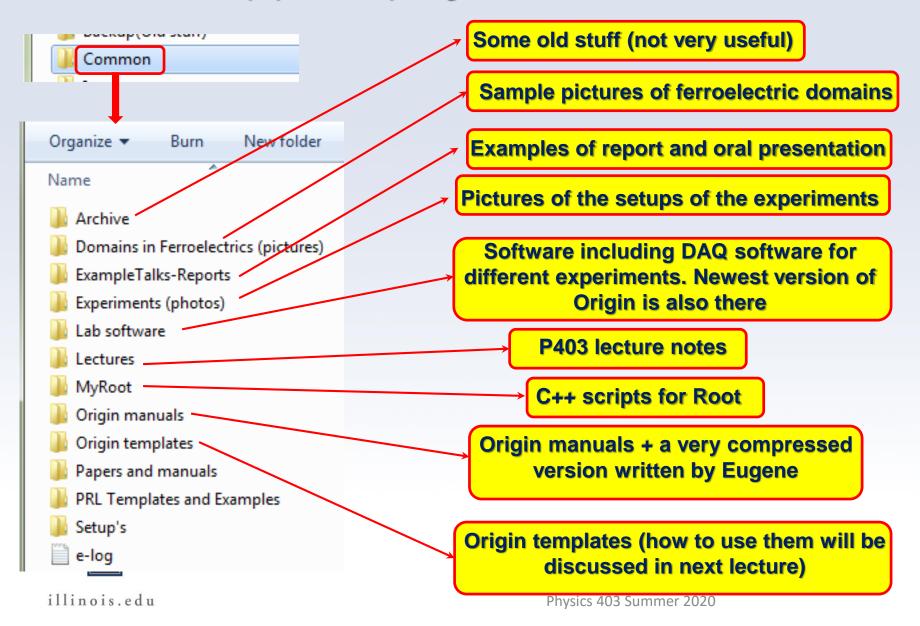
An example of the "smart" structure of folders containing the raw data and data analysis projects



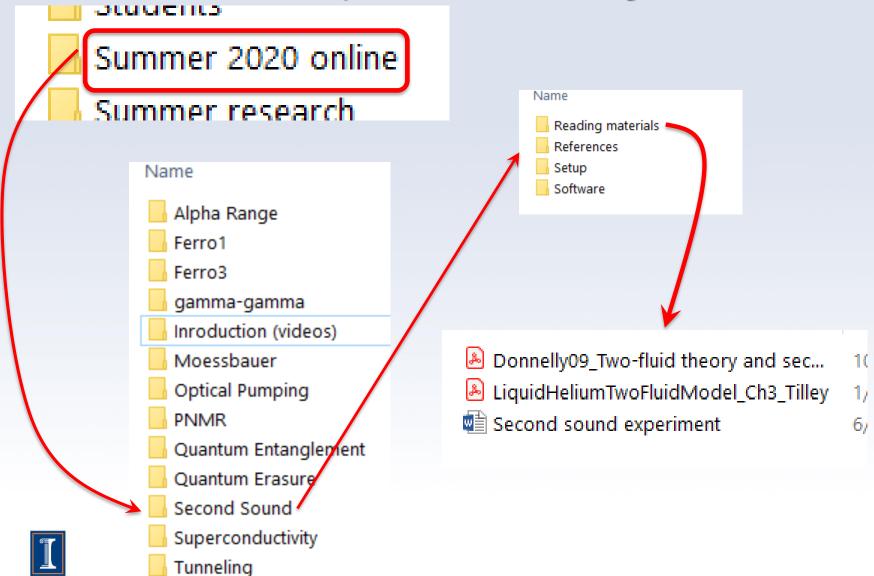
Manuals, papers, setup diagrams and other useful materials



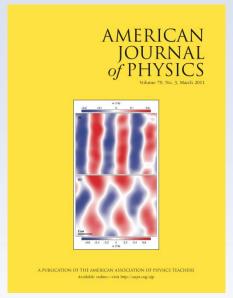
Manuals, papers, setup diagrams and other useful materials

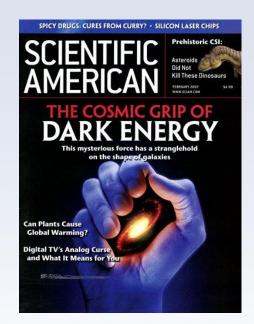


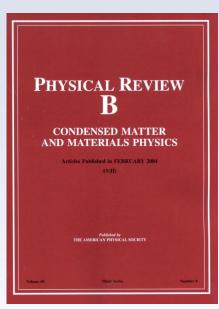
Setup diagrams – do not use cellphones to take the image of the setup from manual – for most setups we have PowerPoint projects with setups.



Manuals, papers, setup diagrams and other useful materials


Material Prepared for Online Teaching


"Journal club"


Lectures: 10am Journal club: 3pm

About Phy403

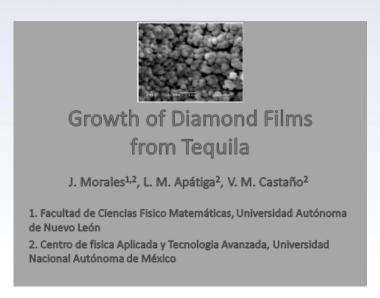
51

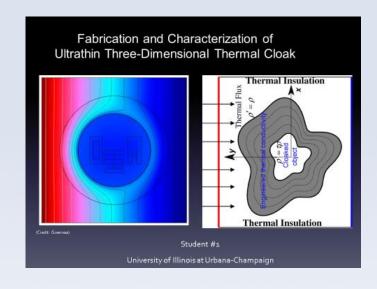
http://ajp.aapt.org/#mainWithRight

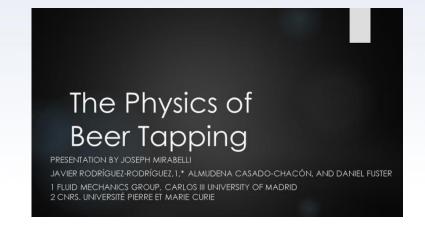
http://www.nature.com/nature/index.htm

http://www.scientificamerican.com/

http://www.sciencemag.org/journals




http://publish.aps.org or http://prola.aps.org/


illinois.edu Physics 403 Summer 2020

"Journal club"

"Journal club"

Journal Access

If you cannot access journal papers using VPN, go to UIUC's library proxy test site and enter the address of the paper you want to read:

http://www.library.illinois.edu/proxy/test/

Recommended journal websites

- American Physical Society Journals: https://journals.aps.org/about
- Nature: http://www.nature.com/nature/index.html
- Science: http://www.sciencemag.org/journals
- American Journal of Physics: http://scitation.aip.org/content/aapt/journal/ajp

Home

Course Schedule

Gradebook

Course Description

Course Grading

Contact Information

Experiment Information

Lectures

Final Oral Session Abstracts

References

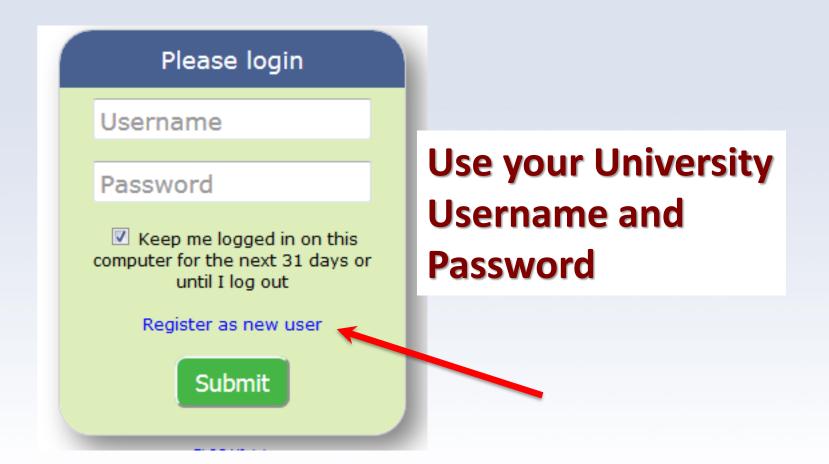
Online Materials

E-LOG

Section Information

PHYS 403 Summer 2020

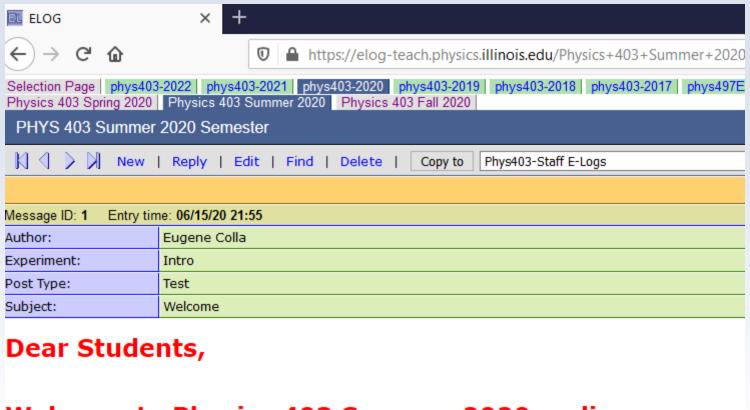
Home page


Announcements

Link to e-Log

Welcome

Please see the <u>course description</u> for an explanation of how this course works. It may seem complicated at first, but all the pieces do work together to enhance understanding. Also, please consult the <u>schedule</u> to help you keep track of what is



Physics 403 Spring 2020 PHYS 403 Spring 2020 PHYS 403 Spring 2020 Semester Physics 403 Summer 2020 PHYS 403 Summer 2019 Semester Physics 403 Fall 2020 PHYS 403 Fall 2020 PHYS 403 Fall 2020 Semester

Welcome to Physics 403 Summer 2020 online course

e-logs: First a brief tour

How to use it

- Pause and summarize your work at natural stopping points in the action. This is useful for particular findings and measurement sequences.
- Along the way, save data, plots, scope shots to your folder on the server.
- Near the end of the class, add a summary/conclusion, indicate future directions, and make sure the e-log provides a rather complete overview of the highlights of your work. Upload your plots, scope shots, etc. and describe the data.

- Create a New Post
- To create a new post, click "New" from the menu bar.
- Fill in the *Author, Experiment, Post Type, and Subject*If the post is written by more than one person, use a comma separated list.

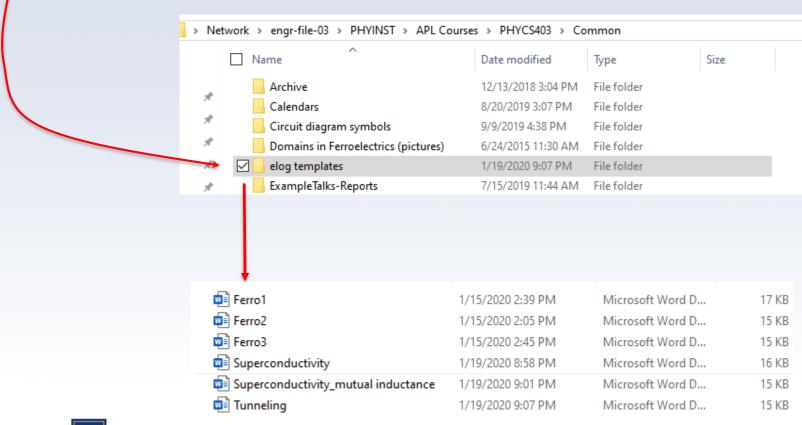
Be sure the Author name is the same you used when registering so that you can edit/delete the post if necessary.

Author:	Your name and your partner's name		
Experiment:	General		
Post Type:	How-To		
Subject:	Day [#]: brief description of work		

Goal: Be specific. Not, "Learn about experiment," but, for example, "In helium below temperatures of 2.17K, a second sound due to thermal effects becomes measurable. We will measure second sound using a resonant cavity..."

Settings / Equipment Notes: Note important environmental and experimental parameters such as atmospheric pressure, settings on equipment, etc.

[Time Range 1]: Give time range, not just "before tea."


- Note important steps and results
- Include plots, photos, or scope shots in attachments below
- Use bullet points to make it easy to read

[Time Range 2]: ...

Conclusions & Future Plans: What did you find and what is the next step? Be specific. Not, "We measured decay times," but, for example, "Ruby #2 sample with higher concentration chromium was observed to decay with a form..."

Physics 403 Summer 2020

Elog records should contain the information about parameters of the experiment and that is why we suggest you to use the templates (\\engr-file-03\PHYINST\APL Courses\PHYCS403\Common\elog templates):

Copy and Paste the template (table) into the record and fill it up with numbers corresponding experiment parameters

Message ID: 365 Entry time: 01/14/20 16:34						
Author:	nor: Eugene Colla					
Experiment:	Ferroelectric (Dielectric)					
Post Type:	Measurement					
Subject:	example of using of the template					

BaTiO ₃ BT1		Г1	Sample area: 4.01 mm ²		Sample thickness: 0.8 mm	
File name	Folder	T range (K)	Frequency (Hz)	V _{AC} (V)	V _{DC} (V)	Comments
14JAN20_s1	Data:student:BTO:set1	300-100K				

